Es un dispositivo diseñado para transferir calor entre dos fluidos, o entre la superficie de un sólido y un fluido en movimiento. Son elementos fundamentales en los sistemas de calefacción, refrigeración, acondicionamiento de aire, producción de energía y procesamiento químico.
Tipos de Intercambiadores de Calor
Los intercambiadores de calor se clasifican de la manera siguiente:
1. Contacto indirecto o recuperadores:
- Tubos concéntricos o doble tubo
A continuación se indica el funcionamiento de un intercambiador de calor de tubos concéntricos o doble tubo:
Los intercambiadores de calor de tubos concéntricos o doble tubo son los más sencillos que existen. Están constituidos por dos tubos concéntricos de diámetros diferentes. Uno de los fluidos fluye por el interior del tubo de menor diámetro y el otro fluido fluye por el espacio anular entre los dos tubos.
Hay dos posibles configuraciones en cuanto a la dirección de los fluidos: a contracorriente y en paralelo. A contracorriente los dos fluidos entran por los extremos opuestos y fluyen en sentidos opuestos; en cambio en paralelo entran por el mismo extremo y fluyen en el mismo sentido. A continuación se pueden ver dos imágenes con las dos posibles configuraciones de los fluidos dentro de los tubos.
Los intercambiadores de calor de tubos concéntricos o doble tubo pueden ser lisos o aleteados. Se utilizan tubos aleteados cuando el coeficiente de transferencia de calor de uno de los fluidos es mucho menor que el otro. Como resultado el área exterior se amplia, siendo ésta más grande que el área interior. El tubo con aletas transversales representado a continuación, se utiliza cuando la dirección del fluido es perpendicular al tubo.
En cambio, cuando la dirección del flujo de los fluidos es paralela al eje de los tubos, el tubo es con aletas longitudinales:
Una aplicación de un intercambiador de doble tubo es el que se utiliza para enfriar o calentar una solución de un tanque encamisado y con serpentín.
- Evaporadores
Un evaporador es un intercambiador de calor de coraza y tubos. Las partes esenciales de un evaporador son la cámara de calefacción y la cámara de evaporación. El haz de tubos corresponde a una cámara y la coraza corresponde a la otra cámara. La coraza es un cuerpo cilíndrico en cuyo interior está el haz de tubos.
Las dos cámaras están separadas por la superficie sólida de los tubos, a través de la cual tiene lugar el intercambio de calor. La forma y la disposición de estas cámaras, diseñadas para que la eficacia sea máxima, da lugar a distintos tipos de evaporadores.
Podemos clasificar los evaporadores en dos grandes grupos:
- Evaporadores de tubos horizontales.
El vapor calefactor es vapor de agua saturado que cede su calor de condensación y sale como agua líquida a la misma temperatura y presión de entrada. Este evaporador se denomina de tubos horizontales porque los tubos están dispuestos horizontalmente.
En el siguiente evaporador, la cámara de calefacción está formada por los tubos horizontales, que están soportados por dos placas. El vapor entra en los tubos y se condensa al cedes su calor de condensación. Puede quedar vapor no condensable, que se elimina mediante una purga. La cámara de evaporación formada por un cuerpo cilíndrico vertical, cerrado por las bases, con una salida para el disolvente evaporado por la parte superior y otra salida para la disolución concentrada en la parte inferior. Estos evaporadores suelen ser de chapa de acero o hierro con un diámetro aproximado de 2 metros y 3 metros de altura. El diámetro de los tubos acostumbra a ser de 2 a 3 centímetros.
En el siguiente evaporador el vapor entra por dentro de los tubos, y al ceder calor al líquido que circula por encima de los tubos, el vapor se condensa. Del evaporador sale la disolución concentrada y el disolvente evaporado.
Evaporadores de tubos verticales. Se denominan así porque el haz de tubos están dispuestos verticalmente dentro de la coraza.
El evaporador que se encuentra a continuación se denomina Evaporador Standard, que es uno de los más conocidos. La evaporación tiene lugar dentro de los tubos, saliendo por la parte superior el disolvente evaporado y por la parte inferior la disolución concentrada. El vapor calefactor entra por encima del haz de tubos y sale como agua condensada.
El Evaporador de Cesta que se encuentra a continuación, es otro tipo de evaporador de tubos verticales, en el cual la coraza tiene forma cónica. Este tipo de evaporador se utiliza cuando lo que se pretende es llevar la evaporación al extremo, es decir, evaporar todo el disolvente de la disolución diluida para obtener cristales. Los cristales formados se recogen por la parte inferior. El elemento calefactor se trata de un cuerpo compacto que se puede extraer para su limpieza.
Evaporador Múltiple Efecto
- Alimentación Directa. El alimento entra en el primer efecto y sigue el mismo sentido de circulación que el vapor, saliendo el producto en el último efecto. El líquido circula en el sentido de las presiones decrecientes y no es necesario aplicar ninguna energía auxiliar para que el líquido pase de un efecto al otro. Solo hacen falta dos bombas, una para introducir el líquido en el primer efecto y otra para extraer el producto del último efecto.
- Alimentación a Contracorriente. El líquido a evaporar entra en el último efecto y sale concentrado por el primero. El líquido a concentrar y el vapor calefactor circulan en sentido contrario. Aquí el líquido circula en sentido de presiones crecientes y esto requiere el uso de bombas en cada efecto para bombear la disolución concentrada de un efecto al siguiente . Esto supone una complicación mecánica considerable que se suma al hecho de hacer trabajar las bombas a presiones inferiores a la atmosférica. Así, si no hay otras razones, se prefiere el sistema de alimentación directa.
- Alimentación Mixta. Cuando en una parte del sistema de alimentación es directa y en la otra parte es a contracorriente. Este sistema es útil si tenemos disoluciones muy viscosas. Si utilizamos la corriente directa pura, nos encontramos que el último efecto, donde hay menos temperaturas la viscosidad de la disolución concentrada aumenta, lo que hace disminuir sensiblemente el coeficiente global, U, en este efecto. Para contrarrestar eso, se utiliza la alimentación a contracorriente o la mixta. La disolución diluida entra en el segundo efecto i sigue el sentido de la alimentación directa, pasando después del último efecto al primero, para completar la evaporación a temperatura elevada.
- Alimentación en paralelo. Cuando el alimento entra simultáneamente a todos los efectos y el líquido concentrado se une en una sola corriente. Sistema utilizado en la concentración de disoluciones de sal común, donde los cristales depositados hacen que resulte difícil la disposición de la alimentación directa.
En general, para decidirnos por un sistema de alimentación u otro, es necesario efectuar el cálculo previo del rendimiento de evaporación para cada uno de los sistemas.
Si la temperatura de entrada del alimento es bastante inferior a la de ebullición en el primer efecto, en el caso de corrientes directas todo el calor que se da en el primer efecto va destinado a calentar el alimento (calor sensible) y muy poco a producir vapor, lo que provocará un bajo rendimiento en el proceso global del múltiple efecto. En este caso se prefiere la circulación a contracorriente.
Por lo contrario, cuando la disolución entra en el sistema a temperatura superior a la de ebullición del último efecto, será más conveniente la alimentación directa, ya que lo que pasaría sería que la disolución al entrar al último efecto lo vaporizaría parcialmente, produciendo un vapor que no tiene utilidades posteriores, entonces la disolución lo enfriaría hasta la temperatura de la cámara de evaporación del último efecto y posteriormente se tendría que ir calentando al entrar a cada efecto.
- Placas
Un intercambiador de calor de placas consiste en una sucesión de láminas de metal armadas en un bastidor y conectadas de modo que entre la primera y la segunda placa circule un fluido, entre la segunda y la tercera otro, y así sucesivamente. Estas placas están separadas por juntas, fijadas en una coraza de acero.
En la figura de debajo hay diferentes tipos de placas que se pueden encontrar en un intercambiador de calor de placas. Cada placa tiene canalizaciones diferentes de fluido que inducen a turbulencia.
- Compacto
Los intercambiadores de calor compactos están diseñados para conseguir una gran área superficial de transferencia de calor por unidad de volumen.
En los intercambiadores compactos, los dos fluidos normalmente se mueven en direcciones ortogonales entre sí. Esta configuración del flujo recibe el nombre de flujo cruzado. El flujo cruzado se clasifica en mezclado (uno de los dos fluidos fluye libremente en dirección ortogonal al otro sin restricciones) y no mezclado (se ponen unas placas para guiar el flujo de uno de los fluidos).
Ejemplos de intercambiadores de calor compactos son los radiadores de los coches, los intercambiadores de calor de cerámica de vidrio de las turbinas de gas, el regenerador del motor Stirling y el pulmón humano.
- Regeneradores
En un regenerador, la transferencia de calor entre dos corrientes es transportada por el paso alternado de fluidos calientes y fríos a través de un lecho de sólidos, el cual tiene una apreciable capacidad de almacenamiento de calor. El fluido caliente proporciona calor a los sólidos que se calientan de forma gradual; pero antes de llegar al equilibrio los flujos son cambiados y entonces el fluido frío remueve el calor del lecho. En un tipo de regenerador se utilizan dos lechos idénticos, como en un sistema absorbedor-desorbedor. Un segundo tipo utiliza un lecho rotatorio con forma de una llanta gruesa, con el fluido frío que circula axialmente a través del sector (generalmente 180º) del lecho, mientras que el fluido caliente circula en una dirección contraria a través del otro sector. En regeneradores rotatorios, el lecho es frecuentemente una matriz de barras, pantallas o láminas corrugadas, hace que tenga una gran área de superficie, pero además, una alta fracción de vacíos y una caída de presión más baja que un lecho de partículas.
El número de unidades de transferencia se basa en el área de la superficie total de los dos lechos o de la rueda rotatoria.
Donde :
2. Contacto directo:
- Torres de Enfriamiento
Las torres de enfriamiento son un tipo de intercambiadores de calor que tienen como finalidad quitar el calor de una corriente de agua caliente, mediante aire seco y frío, que circula por la torre.
- Torres de circulación natural
- Atmosféricas: El movimiento del aire depende del viento y del efecto aspirante de los aspersores. Se utiliza en pequeñas instalaciones. Depende de los vientos predominantes para el movimiento del aire.
- Tiro natural: El flujo del aire necesario se obtiene como resultado de la diferencia de densidades, entre el aire más frío del exterior y húmedo del interior de la torre. Utilizan chimeneas de gran altura para obtener el tiro deseado. Debido a las grandes dimensiones de estas torres se utilizan flujos de agua de más de 200000gpm. Es muy utilizado en las centrales térmicas.
- Torres de tiro mecánico
- Tiro inducido: el aire se succiona a través de la torre mediante un ventilador situado en la parte superior de la torre. Son las más utilizadas.
- Tiro forzado: el aire es forzado por un ventilador situado en la parte inferior de la torre y se descarga por la parte superior.
Otros tipos: Torres de flujo cruzado. El aire entra por los lados de la torre fluyendo horizontalmente a través del agua que cae. Estas torres necesitan más aire y tienen un coste de operación más bajo que las torres a contracorriente.
Burgos Francis
IGT - Does Titanium Have Nickel in it? - iTaniumArts
ResponderEliminarThe alloy in my glass titanium white dominus was constructed from used ford edge titanium an alloy titanium nose hoop of nickel, but it can still be used in commercial projects such as hotels, camillus titanium restaurants and titanium tubing museums